Market force data descriptive statistics
Usage
demand_descriptives(object)
supply_descriptives(object)
# S4 method for market_model
demand_descriptives(object)
# S4 method for market_model
supply_descriptives(object)
Details
Calculates and returns basic descriptive statistics for the model's demand or supply side data. Factor variables are excluded from the calculations. The function calculates and returns:
nobs
Number of observations.nmval
Number of missing values.min
Minimum observation.max
Maximum observation.range
Observations' range.sum
Sum of observations.median
Median observation.mean
Mean observation.mean_se
Mean squared error.mean_ce
Confidence interval bound.var
Variance.sd
Standard deviation.coef_var
Coefficient of variation.
Functions
demand_descriptives()
: Demand descriptive statistics.supply_descriptives()
: Supply descriptive statistics.
Examples
# initialize the basic model using the houses dataset
model <- new(
"diseq_basic", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), # data
correlated_shocks = FALSE # allow shocks to be correlated
)
# get descriptive statistics of demand side variables
demand_descriptives(model)
#> RM TREND W CSHS L1RM
#> nobs 1.300000e+02 1.300000e+02 1.300000e+02 1.300000e+02 1.300000e+02
#> nmval 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> min 5.780000e+02 1.500000e+01 1.800000e+01 1.334800e+03 5.770000e+02
#> max 8.350000e+02 1.440000e+02 2.300000e+01 1.643820e+04 8.300000e+02
#> range 2.570000e+02 1.290000e+02 5.000000e+00 1.510340e+04 2.530000e+02
#> sum 8.209400e+04 1.033500e+04 2.757000e+03 1.154007e+06 8.183600e+04
#> median 6.000000e+02 7.950000e+01 2.100000e+01 9.018400e+03 6.000000e+02
#> mean 6.314923e+02 7.950000e+01 2.120769e+01 8.876977e+03 6.295077e+02
#> mean_se 5.690898e+00 3.304038e+00 9.438383e-02 3.861383e+02 5.482995e+00
#> mean_ce 1.115395e+01 6.475795e+00 1.849889e-01 7.568171e+02 1.074647e+01
#> var 4.210221e+03 1.419167e+03 1.158080e+00 1.938336e+07 3.908221e+03
#> sd 6.488621e+01 3.767183e+01 1.076141e+00 4.402654e+03 6.251576e+01
#> coef_var 1.027506e-01 4.738595e-01 5.074297e-02 4.959632e-01 9.930898e-02
#> L2RM
#> nobs 1.300000e+02
#> nmval 0.000000e+00
#> min 5.770000e+02
#> max 8.250000e+02
#> range 2.480000e+02
#> sum 8.158300e+04
#> median 6.000000e+02
#> mean 6.275615e+02
#> mean_se 5.272695e+00
#> mean_ce 1.033429e+01
#> var 3.614171e+03
#> sd 6.011797e+01
#> coef_var 9.579614e-02
# get descriptive statistics of supply side variables
supply_descriptives(model)
#> RM TREND W L1RM MA6DSF
#> nobs 1.300000e+02 1.300000e+02 1.300000e+02 1.300000e+02 1.300000e+02
#> nmval 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> min 5.780000e+02 1.500000e+01 1.800000e+01 5.770000e+02 1.410000e+02
#> max 8.350000e+02 1.440000e+02 2.300000e+01 8.300000e+02 1.476000e+03
#> range 2.570000e+02 1.290000e+02 5.000000e+00 2.530000e+02 1.335000e+03
#> sum 8.209400e+04 1.033500e+04 2.757000e+03 8.183600e+04 1.201327e+05
#> median 6.000000e+02 7.950000e+01 2.100000e+01 6.000000e+02 9.381667e+02
#> mean 6.314923e+02 7.950000e+01 2.120769e+01 6.295077e+02 9.240974e+02
#> mean_se 5.690898e+00 3.304038e+00 9.438383e-02 5.482995e+00 2.476300e+01
#> mean_ce 1.115395e+01 6.475795e+00 1.849889e-01 1.074647e+01 4.853458e+01
#> var 4.210221e+03 1.419167e+03 1.158080e+00 3.908221e+03 7.971677e+04
#> sd 6.488621e+01 3.767183e+01 1.076141e+00 6.251576e+01 2.823416e+02
#> coef_var 1.027506e-01 4.738595e-01 5.074297e-02 9.930898e-02 3.055323e-01
#> MA3DHF
#> nobs 130.000000
#> nmval 0.000000
#> min -586.666667
#> max 524.333333
#> range 1111.000000
#> sum 7204.666667
#> median 61.166667
#> mean 55.420513
#> mean_se 15.849930
#> mean_ce 31.065293
#> var 32658.638336
#> sd 180.717012
#> coef_var 3.260833