Market data and model simulation functionality based on the data generating process induced by the market model specifications.
Usage
simulate_data(
model_type_string,
nobs = NA_integer_,
tobs = NA_integer_,
alpha_d = NA_real_,
beta_d0 = NA_real_,
beta_d = NA_real_,
eta_d = NA_real_,
alpha_s = NA_real_,
beta_s0 = NA_real_,
beta_s = NA_real_,
eta_s = NA_real_,
gamma = NA_real_,
beta_p0 = NA_real_,
beta_p = NA_real_,
sigma_d = 1,
sigma_s = 1,
sigma_p = 1,
rho_ds = 0,
rho_dp = 0,
rho_sp = 0,
seed = NA_integer_,
price_generator = function(n) stats::rnorm(n = n),
control_generator = function(n) stats::rnorm(n = n),
verbose = 0
)
# S4 method for ANY
simulate_data(
model_type_string,
nobs = NA_integer_,
tobs = NA_integer_,
alpha_d = NA_real_,
beta_d0 = NA_real_,
beta_d = NA_real_,
eta_d = NA_real_,
alpha_s = NA_real_,
beta_s0 = NA_real_,
beta_s = NA_real_,
eta_s = NA_real_,
gamma = NA_real_,
beta_p0 = NA_real_,
beta_p = NA_real_,
sigma_d = 1,
sigma_s = 1,
sigma_p = 1,
rho_ds = 0,
rho_dp = 0,
rho_sp = 0,
seed = NA_integer_,
price_generator = function(n) stats::rnorm(n = n),
control_generator = function(n) stats::rnorm(n = n),
verbose = 0
)
simulate_model(
model_type_string,
simulation_parameters,
seed = NA,
verbose = 0,
correlated_shocks = TRUE
)
# S4 method for ANY
simulate_model(
model_type_string,
simulation_parameters,
seed = NA,
verbose = 0,
correlated_shocks = TRUE
)
Arguments
- model_type_string
Model type. It should be among
equilibrium_model
,diseq_basic
,diseq_directional
,diseq_deterministic_adjustment
, anddiseq_stochastic_adjustment
.- nobs
Number of simulated entities.
- tobs
Number of simulated dates.
- alpha_d
Price coefficient of demand.
- beta_d0
Constant coefficient of demand.
- beta_d
Coefficients of exclusive demand controls.
- eta_d
Demand coefficients of common controls.
- alpha_s
Price coefficient of supply.
- beta_s0
Constant coefficient of supply.
- beta_s
Coefficients of exclusive supply controls.
- eta_s
Supply coefficients of common controls.
- gamma
Price equation's stability factor.
- beta_p0
Price equation's constant coefficient.
- beta_p
Price equation's control coefficients.
- sigma_d
Demand shock's standard deviation.
- sigma_s
Supply shock's standard deviation.
- sigma_p
Price equation shock's standard deviation.
- rho_ds
Demand and supply shocks' correlation coefficient.
- rho_dp
Demand and price shocks' correlation coefficient.
- rho_sp
Supply and price shocks' correlation coefficient.
- seed
Pseudo random number generator seed.
- price_generator
Pseudo random number generator callback for prices. The default generator is \(N(0, 1)\).
- control_generator
Pseudo random number generator callback for non-price controls. The default generator is \(N(0, 1)\).
- verbose
Verbosity level.
- simulation_parameters
List of parameters used in model simulation. See the
simulate_data
function for details.- correlated_shocks
Should the model be estimated using correlated shocks?
Examples
# \donttest{
model <- simulate_model(
"diseq_stochastic_adjustment", list(
# observed entities, observed time points
nobs = 500, tobs = 3,
# demand coefficients
alpha_d = -0.1, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
# supply coefficients
alpha_s = 0.1, beta_s0 = 6.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
# price equation coefficients
gamma = 1.2, beta_p0 = 3.1, beta_p = c(0.8)
),
seed = 31
)
# }